CAUSES OF TREE STRESS

Ryan DeSantis

Southeast Oklahoma Forest Health Workshop | Idabel, OK | May 10, 2024

Background: Causes

- Biotic vs abiotic factors
- Weather vs climate
- Insects & diseases

Trees: How & What

Plant growth process & accumulation of organic matter

- Carbon based products
 - Water + Carbon dioxide
 - Sugar
 - Complex molecules
 - Cells

Three phases in growth:

1. Photosynthesis Creation of the sugar molecules

2. Transport

Move these compounds to the sites where cell division (new cells added) occurs

3. Metabolism

Assemble into long chain molecules in cell components

The growth process first makes the raw material, transports it to the construction site, then assembles it into wood structure

Transport

- Sugars transported to growing cells
- Transport is primarily through the phloem (inner bark)
- Moved to meristematic tissue throughout the plant

Allocation of energy (priorities) during plant growth

- 1. Maintain respiration (sugar + oxygen = energy for plant growth)
- 2. Produce fine roots and leaves
- 3. Produce flowers and seeds
- 4. Extend branches
- 5. Store energy rich chemicals
- 6. Add wood to stems, roots and branches
- 7. Create anti-pest chemicals for defense

Occurring at a rate determined by availability of resources

Growth & maintenance dependent on:

- Plant physiology (vigor, LCR, age)
- Temperature & Light
- CO_2 and H_2O
- Soil and site (nutrition)

Tree Vigor

Healthy plants

- Carry out physiological functions
- Cell division & differentiation, specialized cells fulfill dedicated tasks

Unhealthy/diseased/infested plants

- Compromised ability of plant cells due to biological element or environmental factor
- Affected cells indicate type of physiological function lost

• Agrios 2005

FIGURE 1-1 Schematic representation of the basic functions in a plant (left) and of the kinds of interference with these functions (right) caused by some common types of plant diseases.

Requirements

- Moisture
- Nutrients
- Heat
- Light

Synecology

3

5

1

- 4 – Cottonwood 5
- Shortleaf pine 1
- Site variables

Process Interruption

Deprived of resources?

- Bark beetles, wood borers

No water & nutrient uptake by roots?

Root diseases

Transport cut off?

Stem diseases

Photosynthesis cut off?

Foliar diseases

Abiotic Factors

Can cause any of the above damage

Abiotic

- Moisture
 - Too little
 - Too much: Oxygen?
- Inadequate nutrition (Deficiencies)
- Temperature
- Light
- Wind
 - Dessication
 - Pressure
 - Air Pollution
 - Herbicide
- Fire
- Abrasion?

Abiotic

- Abiotic disorder = noninfectious disease, symptoms caused by environment
- ✓ Water deficiency example
 - Winter injury/ red belt effect (elevated winter temperatures during periods of low moisture, frozen soils, dessicating winds and inversion layers)

Biotic

Fungi, viruses, bacteria,
 nematodes, parasitic
 plants, viroids, protozoans

Biotic

- Biotic disease = symptoms caused by a living organism, attacking plants to gain nutrition from host
- ✓ Insects & diseases
 - Tree girdling (Vascular cambium)
 - Loss of foliage (Photosynthesis)

Decline-Disease Spiral

What do biotic organisms need?

• Environment is key!

- PREDISPOSING/INCITING FACTORS
 - Temperature, moisture regime, light
 - Mechanical damage
- Contact or proximity to biotic organisms

What do biotic organisms need?

Manion 1981

 Vigorous/healthy plants often are not affected when exposed to biotic/abiotic problems

Wood decay fungi need:

- Oxygen
- Water
- Food
 - Cell wall materials
 - Cellulose, Hemicellulose, Lignin
- Stored or un-transported sugars in the lumens
- Temperature

Insects need the same things

Insects

- Bark beetles
- Wood borers
- Defoliators

Decline-Disease Spiral

U.S. Drought Monitor Oklahoma

March 28, 2023 (Released Thursday, Mar. 30, 2023) Valid 8 a.m. EDT

	Drought Conditions (Percent Area)						
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4	
Current	39.69	60.31	53.68	48.59	37.30	12.83	
Last Week 03-21-2023	34.39	65.61	59.07	50.12	36.64	11.21	
3 Month s Ago 12-27-2022	1.82	98.18	89.73	80.92	56.13	11.65	
Start of Calendar Yea 01-03-2023	r 1.82	98.18	89.73	80.92	56.13	11.65	
Start of Water Year 09-27-2022	0.00	100.00	99.88	94.44	64.44	17.25	
One Year Ago 03-29-2022	13.76	86.24	76.49	63.34	33.90	8.32	

 None
 D2 Severe Drought

 D0 Abnormally Dry
 D3 Extreme Drought

 D1 Moderate Drought
 D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

<u>Author:</u> Curtis Riganti National Drought Mitigation Center

droughtmonitor.unl.edu

Mid-Century Projected Change of the Annual Average **Number of Heatwaves**

Annual Average 5-Day Maximum Rainfall

Mid-Century Projected Change in the

Mid-Century Projected Change in the Average Annual Longest Dry Spell Length

Adapted from: Ashley et al. 2022 Mean annual supercell track counts on an 80 km grid for the three simulation epochs: The mean annual supercell count track difference, or delta, between FUTR8.5 and HIST. Stippling denotes a significant (p < 0.05; Mann–Whitney U test) difference between HIST and FUTR8.5.

Predisposing Factor: Tree Species Growing Outside Climatically Adapted Range

Inciting Factor: Drought

 78
 63
 54
 33
 50
 43
 98
 113
 113
 113
 113
 97
 98
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96
 96

Drought note: While SE OK has experienced average precipitation this year, from 2022-2023 it experienced considerable drought. Trees do not "catch up" for awhile, and drought stress is likely higher for species planted outside native range

April 24, 2023 Departure Precipitation Created on: April 24, 2023 - 21:05 UTC Valid on: April 24, 2023 12:00 UTC

Sector Inches

Inciting Factor: Lingering Effects of 2021 Freeze

33

Future Contributing Factor: Needle Blights

• Secondary pests

• Wind & hail damage

- Needlecast
- Dothistroma

Possible Contributing Factors: Pitch canker, annosum, etc

- Secondary pests
- Single trees
- Tip-over

Contributing Factors: Ips Engraver Beetle & Black Turpentine Beetle

- Secondary pests: attack damaged or weakened trees
- Treatment generally not recommended
- Imidicloprid injection only works <u>before</u> beetle establishment
- "Doughnut" management generally only works for SPB infestations since Ips/BTB damage is more scattershot

Black turpentine beetle

Questions?

OSU EXTENSION

Ryan DeSantis ryan.desantis@okstate.edu