# Using Programmed Feeding of High Concentrate TMRs to Grow Calves

Growing Calves Without Wheat Pasture Rancher's Thursday Lunchtime Series

> Dale A. Blasi, PhD Kansas State University





# Drought in Kansas (2000 – 2018)



https://www.drought.gov/drought/states/kansas



## **Starting Calves on Feed**

Do not Compound Stress!!!!!!





# DM intake (% of BW) of Newly Arrived Calves

| Day of arrival, d | Healthy (SD) | Diseased (SD) |
|-------------------|--------------|---------------|
| 0 to 7            | 1.55 (0.51)  | 0.90 (0.75)   |
| 0 to 14           | 1.90 (0.50)  | 1.43 (0.70)   |
| 0 to 28           | 2.71 (0.50)  | 1.84 (0.66)   |
| 0 to 56           | 3.03 (0.43)  | 2.68 (0.68)   |

Hutcheson and Cole, 1986

# **Nutrition Paradigms**



Lofgreen et al., 1975 and Rivera et al., 2005

**Increased incidence or severity** of subacute and acute ruminal

## But....



- Increased dietary energy often offsets slight increases in morbidity
- Use of high-energy diets in receiving protocols is still cautioned by nutritionists

## Traditional KSU Beef Stocker Unit Diets



## Limit Feeding:

Been around a long time

Definition: Feeding method in which net energy equations are used to calculate the quantities of feed required to meet the needs for maintenance and a specific rate of gain.



# Limit feeding



- Feeding practice since the 1980's
- Improvements in feed efficiency
- No negative effects on health, improved morbidity detection
- Decreases in feed costs, waste removal, and expertise for bunk management
- Flexibility in commodity trading
- Less roughage and manure handling
- Decreased feed wastage
- Less labor, equipment and feeding expense
- Marketing

Loerch, 1990 Galyean et al., 1999 Spore et al., 2019



Boot camp breakfast

"Camp Pendleton"

All night All you can eat buffet

"Vegas Baby"

VS.



# Limit-feeding while increasing dietary energy



# Limit Feeding – Then and Now......

### <u>Then</u>

- Cattle started slowly @ 14 days post arrival
- High Fermentable carbohydrates

DM %

- Rolled corn 66.2
- Cottonseed meal 13.7
- Alfalfa pellets 8.0
- Cottonseed hulls 5.0

NEg = 58 mcal/100 lb Crude protein = 16%

### Our approach

- 1% BW, DM basis grass hay on day of arrival
- Start "Camp Pendleton" @ 1% body weight next day and increase .25% per day to 2.2% body weight (Day 5)
- High co-product inclusion is <u>CRITICAL</u>! (40% DM basis)

NEg = 60 mcal/100 lb Crude protein = 17%

| JWA STATE U<br>tension and Out<br>wa Beef Center | UNIVERSITY<br>reach |     |          |           |         |                  | Prepared by:     | 0         |            |
|--------------------------------------------------|---------------------|-----|----------|-----------|---------|------------------|------------------|-----------|------------|
| Ha beer veriter                                  |                     |     |          |           |         |                  |                  | 0         |            |
|                                                  |                     | Fee | edyard I | Limit Fee | eding S | sheet            |                  | 0         |            |
|                                                  |                     |     | -        |           |         |                  |                  | 0         |            |
| ale Test Dri                                     | ve                  |     | Ration:  | limitfeed |         |                  |                  | 0         |            |
| )                                                |                     |     |          |           |         | Method           | % of body w      | t.        |            |
|                                                  |                     |     |          |           |         | Target           | 2.0              | %         |            |
|                                                  |                     |     |          |           |         | Head             | 100              | hd        |            |
| )                                                |                     |     |          |           |         | Step Up          | 0.0              | % of mix  |            |
|                                                  |                     |     |          |           |         |                  | daily            |           |            |
|                                                  |                     |     |          |           |         | \$/lb Gain       | \$/lb Gain       | Acc.\$/Hd | Group Feed |
| )ate                                             | DoF                 | Wt  | ADG      | DMI       | AFI     | Feed             | Total            | Total     | Delivery   |
| 3/21/19                                          | 1                   | 552 | 2.28     | 11.0      | 20.3    | \$0.52           | \$0.74           | \$1.70    | 2030       |
| 3/22/19                                          | 2                   | 555 | 2.28     | 11.0      | 20.4    | \$0.53           | \$0.74           | \$3.39    | 2038       |
| 3/23/19                                          | 3                   | 557 | 2.29     | 11.1      | 20.5    | \$0.53           | \$0.75           | \$5.09    | 2047       |
| 3/24/19                                          | 4                   | 559 | 2.29     | 11.1      | 20.6    | \$0.53           | \$0.75           | \$6.80    | 2055       |
| 3/25/19                                          | 5                   | 561 | 2.30     | 11.2      | 20.6    | \$0.53           | \$0.75           | \$8.51    | 2064       |
| 3/26/19                                          | 6                   | 564 | 2.30     | 11.2      | 20.7    | \$0.53           | \$0.75           | \$10.23   | 2072       |
| 3/27/19                                          | 7                   | 566 | 2.31     | 11.3      | 20.8    | Ş0.53            | \$0.75           | \$11.95   | 2081       |
| 3/28/19                                          | 8                   | 568 | 2.31     | 11.3      | 20.9    | Ş0.53            | \$0.75           | \$13.67   | 2089       |
| 3/29/19                                          | 9                   | 571 | 2.32     | 11.4      | 21.0    | \$0.53           | \$0.75           | \$15.41   | 2098       |
| 3/30/19                                          | 10                  | 5/3 | 2.32     | 11.4      | 21.1    | \$0.53           | \$0.75           | \$17.14   | 2106       |
| 3/31/19                                          | 11                  | 5/5 | 2.33     | 11.5      | 21.1    | \$0.54           | \$0.75           | \$18.88   | 2115       |
| 4/1/19                                           | 12                  | 5/8 | 2.55     | 11.5      | 21.2    | \$0.54           | \$0.75           | \$20.63   | 2123       |
| 4/2/19                                           | 13                  | 580 | 2.34     | 11.6      | 21.3    | \$0.54           | \$0.75           | \$22.38   | 2132       |
| 4/5/19                                           | 14                  | 202 | 2.54     | 11.0      | 21.4    | \$0.54<br>\$0.54 | \$0.75<br>\$0.75 | \$24.14   | 2141       |
| 4/4/19                                           | 15                  | 597 | 2.55     | 11.0      | 21.5    | \$0.54           | \$0.75           | \$27.50   | 2149       |
| 4/6/19                                           | 17                  | 589 | 2.35     | 11.7      | 21.0    | \$0.54           | \$0.75           | \$29.00   | 2150       |
| 4/7/19                                           | 18                  | 592 | 2.36     | 11.8      | 21.8    | \$0.54           | \$0.75           | \$31.21   | 2107       |
| 4/8/19                                           | 19                  | 594 | 2.36     | 11.8      | 21.8    | \$0.54           | \$0.76           | \$33.00   | 2184       |
| 4/9/19                                           | 20                  | 596 | 2.37     | 11.9      | 21.9    | \$0.55           | \$0.76           | \$34.78   | 2193       |
| 4/10/19                                          | 21                  | 599 | 2.37     | 11.9      | 22.0    | \$0.55           | \$0.76           | \$36.57   | 2201       |
| 4/11/19                                          | 22                  | 601 | 2.38     | 12.0      | 22.1    | \$0.55           | \$0.76           | \$38.37   | 2210       |
| 4/12/19                                          | 23                  | 604 | 2.38     | 12.0      | 22.2    | \$0.55           | \$0.76           | \$40.17   | 2219       |
| 4/13/19                                          | 24                  | 606 | 2.39     | 12.1      | 22.3    | \$0.55           | \$0.76           | \$41.98   | 2228       |
| 4/14/19                                          | 25                  | 608 | 2.39     | 12.1      | 22.4    | \$0.55           | \$0.76           | \$43.79   | 2237       |
| 4/15/19                                          | 26                  | 611 | 2.40     | 12.2      | 22.5    | \$0.55           | \$0.76           | \$45.61   | 2245       |
| 4/16/19                                          | 27                  | 613 | 2.40     | 12.2      | 22.5    | \$0.55           | \$0.76           | \$47.44   | 2254       |
| 4/17/19                                          | 28                  | 616 | 2.41     | 12.3      | 22.6    | \$0.55           | \$0.76           | \$49.26   | 2263       |
| 4/18/19                                          | 29                  | 618 | 2.41     | 12.3      | 22.7    | \$0.56           | \$0.76           | \$51.10   | 2272       |
| 4/19/19                                          | 30                  | 620 | 2.42     | 12.4      | 22.8    | \$0.56           | \$0.76           | \$52.94   | 2281       |
|                                                  |                     |     |          |           |         |                  |                  |           |            |

#### OKLAHOMA COOPERATIVE EXTENSION SERVICE ANSI-3025



#### Limit Feeding Light-Weight Cattle High-Nutrient Density Diets Programmed Feeding for Calves (PROGFED2) (Revision 2)

Chris Richards Associate Professor, Animal Science

#### David L. Lalman Extension Beef Cattle Specialist

Special Note: This revision adds five new equations to the program to more accurately predict the gain of medium and large frame cattle with greater growth potential. The original version of this program used the 1974 NRC equations which were developed in the 1960's for steers and heifer calves. Through the years, additional growth potential has been bred into cattle. For example, a group of large frame heifer calves, program fed at Pawhuska Research Station with the 74 equation and feeding for 2 pounds per day, actually gained 2.68 pounds per day. Others have reported the feeding schedules developed by the original program underestimated gains of many cattle. With the additional five equations published in the 1984 NRC Nutrient Requirements of Beef Cattle, the user should be able to better match this program to the cattle being fed. The two original equations are retained for reference and for the many cattle to which they still apply.

For a cattleman, who has light-weight cattle and does not have adequate forage to maintain growth for some limited period of time, but has sound economic reason to retain the cettle for perturbative of fording at a later data. Unit fording Oklahoma Cooperative Extension Fact Sheets are also available on our website at: http://osufacts.okstate.edu

Feeding Management. Limit feeding of cattle requires special skills and facilities. Minimum requirements are:

- 1. Adequate bunk space so most cattle can eat at one time.
- Pens small enough so cattle come up to the bunk when fed.
- 3. Scales or other methods of weighing out the daily feed.
- Roughage feeds to work the cattle up to a high-concentrate diet.
- Skill on the part of the manager.
- Sufficient business management skill to assess the economic limitations and opportunities in limit feeding of cattle.
- A sound plan for the use or sale of the cattle following limit growing.

First, a ration must be formulated or purchased. It is simplest to calculate the ration's net energy values (NEm & NEg) on a dry matter basis. Appendix I gives the energy values on a number of common feeds which may be used. Rations used for limited intake growing programs require special formulation. The levels of protein, vitamins, and minerals must be increased over the levels used in ad libitum fed

#### Shrunk weights

#### Increase Decrease Total



Effects of Dietary Energy Level and Intake of Corn By-Product Based Diets on Newly Received Growing Cattle: I. Performance, Health, and Digestion

> Spore, T. J., S. P. Montgomery, E. C. Titgemeyer, G. A. Hanzlicek, C. I. Vahl, T. G. Nagaraja, K. T. Cavalli, W. R. Hollenbeck, R. A. Wahl, and D. A. Blasi

# Research Objectives

- <u>Evaluate</u> the effects of high-energy limit-fed diets based on corn by-products on <u>performance</u> of newly received growing cattle
- <u>Analyze</u> effects on <u>overall health</u>
- <u>Examine</u> parameters of <u>digestion</u> and characteristics of fermentation
- <u>Identify</u> dietary <u>effects</u> on <u>immune function</u>, the acute phase protein response, and stress
- <u>Characterize</u> the <u>immunocompetency</u> of healthy and morbid animals under the different dietary conditions

# Material and Methods

- Experiment 1. Performance and health study
  - 354 crossbred heifers (BW = 490 lb)
  - 41 d study with a 14-d gut-fill equalization period (55 d total)
  - Auction markets from AL and TN, assembled by order buyer at Dickson, TN (1,086 km)
  - 4 Treatments
    - 0.45 = formulated to provide 0.45 Mcal  $NE_g/kg$  DM offered to ensure ad libitum intakes
    - 0.50 = 0.50 Mcal NE<sub>g</sub>/kg DM offered at 95% of ad libitum treatment
    - 0.55 = 0.55 Mcal NE<sup>°</sup><sub>g</sub>/kg DM offered at 90% of ad libitum treatment
    - 0.60 = 0.60 Mcal Ne<sup>°</sup><sub>g</sub>/kg DM offered at 85% of ad libitum treatment
  - Refusals from pens offered the 0.99/100 treatment were removed and weighed daily to determine DMI and adjust intakes of the remaining treatments accordingly

# **Experimental Diets**

|           |           | Intake level, % of ad libitum |       |       |       |  |  |  |
|-----------|-----------|-------------------------------|-------|-------|-------|--|--|--|
|           |           | 100                           | 95    | 90    | 85    |  |  |  |
|           |           | Mcal NEg/lb DM                |       |       |       |  |  |  |
| Item      |           | 0.45                          | 0.50  | 0.55  | 0.60  |  |  |  |
| Ingredier | nt, % DM  |                               |       |       |       |  |  |  |
|           | Alfalfa   | 22.50                         | 17.00 | 12.00 | 6.50  |  |  |  |
| Pra       | airie Hay | 22.50                         | 17.00 | 12.00 | 6.50  |  |  |  |
| Dry ro    | lled corn | 8.57                          | 19.08 | 28.50 | 38.82 |  |  |  |
| Sw        | eet Bran  | 40.00                         | 40.00 | 40.00 | 40.00 |  |  |  |
| Sup       | plement   | 6.43                          | 6.92  | 7.50  | 8.18  |  |  |  |

- Fed once daily, programmed to gain 2.2 lb/day
- · Common diet fed the last 14 days of the trial

# Effects of Dietary NEg and Intake

|                 | Dietary NEg Treatment <sup>a</sup> |                     |                    |                    |  |  |  |  |
|-----------------|------------------------------------|---------------------|--------------------|--------------------|--|--|--|--|
| Treatments      | .45 NEg                            | .50 NEg             | .55 NEg            | .60 NEg            |  |  |  |  |
| Diet            | Ad Lib                             | Limit               | Limit              | Limit              |  |  |  |  |
| % of Ad Libitum | 100                                | 95                  | 90                 | 85                 |  |  |  |  |
| Avg. DMI, % BW  | 2.62                               | 2.43 2.33           |                    | 2.25               |  |  |  |  |
|                 |                                    |                     |                    |                    |  |  |  |  |
| Initial BW, lb  | 490                                | 493                 | 490                | 491                |  |  |  |  |
| Final BW, lb    | 614                                | 617                 | 616                | 623                |  |  |  |  |
| DMI, lb         | 14.51 <sup>b</sup>                 | 13.51 <sup>bc</sup> | 12.88 <sup>c</sup> | 12.51 <sup>c</sup> |  |  |  |  |
| ADG, lb         | 2.26                               | 2.25                | 2.29               | 2.40               |  |  |  |  |
| Feed:Gain       | 6.48 <sup>b</sup>                  | 6.12 <sup>b</sup>   | 5.65 <sup>bc</sup> | 5.22 <sup>c</sup>  |  |  |  |  |

Spore et al. (2016).

# Effects of Dietary Energy on Health

| Item          | 0.45 | 0.50 | 0.55 | 0.60 | SEM | P - Value |
|---------------|------|------|------|------|-----|-----------|
| Morbidity, %  |      |      |      |      |     |           |
| Treated once  | 11.2 | 12.6 | 12.3 | 12.6 | 4.6 | 0.99      |
| Treated twice | 3.6  | 4.8  | 2.8  | 4.8  | 2.9 | 0.86      |
| Chronic       | 2.6  | 3.7  | 1.8  | 2.7  | 2.5 | 0.86      |
|               |      |      |      |      |     |           |
| Mortality, %  | 4.2  | 4.4  | 2.1  | 4.3  | 2.1 | 0.83      |

## Effects of Energy Level on Ruminal pH

|                                  |      | Di   | iet <sup>2</sup> |      |                  |        | P-value   |       |  |  |
|----------------------------------|------|------|------------------|------|------------------|--------|-----------|-------|--|--|
| Item                             | 0.45 | 0.50 | 0.55             | 0.60 | SEM <sup>3</sup> | Linear | Quadratic | Cubic |  |  |
| Number of observations           | 6    | 6    | 5                | 6    |                  |        |           |       |  |  |
| Ruminal pH                       |      |      |                  |      |                  |        |           |       |  |  |
| Average <sup>4</sup>             | 5.2  | 5.1  | 4.8              | 4.7  | 0.21             | <0.01  | 0.92      | 0.62  |  |  |
| Minimum <sup>5</sup>             | 4.7  | 4.6  | 4.2              | 4.3  | 0.21             | <0.01  | 0.22      | 0.18  |  |  |
| Maximum <sup>6</sup>             | 5.6  | 5.6  | 5.6              | 5.4  | 0.20             | 0.13   | 0.28      | 0.93  |  |  |
| Time below 5.5, min <sup>7</sup> | 542  | 622  | 789              | 764  | 133              | <0.01  | 0.41      | 0.35  |  |  |

<sup>1</sup>Ruminal pH continuously measured every 10 min using indwelling ruminal bolus (SmaxTec®, Graz, Austria.

 $^2$  Diets formulated to supply 0.45, 0.50, 0.55, or 0.60 Mcal NE  $_{\rm q}/\rm kg$  DM.

<sup>3</sup>Largest value among treatments is reported.

<sup>4</sup>Average pH during last 2 days of period for each animal.

<sup>5</sup>Average minimum pH over last two days of each period for each animal.

<sup>6</sup>Average maximum pH over last two days of each period for each animal.

<sup>7</sup>Average number of minutes ruminal pH measured below 5.5.

## Effects of Energy Level on Ruminal pH



Measurements taken using indwelling pH monitoring bolus (smaXtec, Graz, Austria).

# What happens at the feed yard?

| Influence of Previous Backgrounding Treatment on Carcass Traits |        |                   |      |           |  |  |  |  |  |
|-----------------------------------------------------------------|--------|-------------------|------|-----------|--|--|--|--|--|
| Treatment <sup>1</sup>                                          |        |                   |      |           |  |  |  |  |  |
| Item                                                            | 45     | 60                | SEM  | P – value |  |  |  |  |  |
| Carcass Traits                                                  |        |                   |      |           |  |  |  |  |  |
| Live Weight, Ib                                                 | 1279.9 | 1286.2            | 13.9 | 0.75      |  |  |  |  |  |
| Hot Carcass Weight, lb                                          | 830.4  | 840.8             | 9.0  | 0.42      |  |  |  |  |  |
| Backfat, in                                                     | 0.65ª  | 0.71 <sup>b</sup> | 0.01 | < 0.01    |  |  |  |  |  |
| Quality Grade                                                   |        |                   |      |           |  |  |  |  |  |
| Select, %                                                       | 5.0    | 4.5               | 1.7  | 0.84      |  |  |  |  |  |
| Choice, %                                                       | 85.7   | 89.7              | 2.7  | 0.27      |  |  |  |  |  |
| Prime, %                                                        | 8.8    | 5.2               | 2.2  | 0.19      |  |  |  |  |  |
| Liver Score                                                     |        |                   |      |           |  |  |  |  |  |
| No Abscesses, %                                                 | 86.2   | 87.8              | 2.5  | 0.65      |  |  |  |  |  |
| A-, %                                                           | 5.5    | 5.7               | 1.7  | 0.94      |  |  |  |  |  |
| A, %                                                            | 0.0    | 1.0               | 0.7  | 0.97      |  |  |  |  |  |
| A+, %                                                           | 7.8    | 3.5               | 1.9  | 0.17      |  |  |  |  |  |



- Nutrient Management Plan issues
- No till
  - Weed load
  - Soil compaction

# Ad libitum intake or limit-fed?



#### Photo Credit: Dr. Dale Blasi

## Intake and Digestibility Study

| ltem                   | 45 NEg | 60 NEg |
|------------------------|--------|--------|
| Dry Matter Intake, lbs | 20.2   | 14.8   |
| OMI, lbs               | 18.7   | 14.0   |
| NDFI, lbs              | 7.96   | 3.81   |
| ADFI, lbs              | 4.11   | 1.58   |
| DM Digestibility, %    | 0.62   | 0.71   |
| OM Digestibility, %    | 0.65   | 0.73   |
| NDF Digestibility, %   | 0.58   | 0.56   |
| ADF Digestibility, %   | 0.55   | 0.54   |
| Fecal DM output, lbs   | 7.52   | 4.34   |

58% reduction

#### Full Fed – Ad Lib Diets

| Statem       | ent (DATE 4-25-18 | TERMS        |      | $\supset$ |
|--------------|-------------------|--------------|------|-----------|
| KS           | 4 BEEF STOCKER UN | IT           |      |           |
|              |                   |              |      |           |
| ACCOUNT WITH |                   |              |      | $\neg$    |
| vla          | Trucking inc.     |              |      | _         |
| 3418 5       | silver Creek Rd.  |              |      |           |
| 785-3        | 13-5016           |              |      | $\neg$    |
| 1 17 10      | llater to be and  |              | 0.4  |           |
| F-11-18      | HAUL MANURE       | 2            | 8 12 | WS 1      |
| -18 - 18     | HAUL MANURE       |              | 74   | line      |
| -19-18       | HAUL MANUKE       |              | C 1. | 1         |
| 1-23-10      | HUMI MANUNE       |              | 2    | 112       |
| 4-24-18      | HAAL MANURE       |              | 8    | hrs       |
|              | WIII - Q Hare     | 4            | 27// | 00        |
|              | 47hrs @ #25 4     | - P          | 3740 |           |
|              | AMT DUE           | \$           | 3740 | 00        |
|              | HUNKING !-        |              |      |           |
| 100000       | OVER 60 DAYS      | TOTAL AMOUNT |      | $ \neg$   |
|              |                   |              |      | 1         |

350 head x 90 days= 31,500 pen days

## Full Fed:

\$3,740.00 / 31,500 pen days = 11.87 cents/hd/day

#### Limit Fed:

\$2,169.20 / 31,500 pen days = 6.89 cents/hd/day

#### Savings:

\$1,571.00 or 4.99 cents/hd/day



## **Bunk Management – Limit Feeding**

- Adequate bunk space How much?
- Empty bunks and hungry, aggressive cattle waiting for feed can will be nerve wracking
- Bunks will be licked slick within 4 5 hours post feeding and will be clean for the next 20 hr

# Effects of bunk-space allotment on performance of growing calves limit-fed a high energy corn, corn co-product diet during the receiving period

|                  | Treatment – Inches/animal |     |     |     |      |      | <i>P</i> -value | 2     |
|------------------|---------------------------|-----|-----|-----|------|------|-----------------|-------|
| ltem,            | 10                        | 15  | 20  | 25  | SEM  | Lin  | Quad            | Cubic |
| Body Weight, lbs |                           |     |     |     |      |      |                 |       |
| Day 0            | 472                       | 475 | 473 | 475 | 7.6  | 0.77 | 0.94            | 0.69  |
| Day 29           | 524                       | 531 | 536 | 535 | 8.4  | 0.15 | 0.49            | 0.92  |
| Day 58           | 566                       | 572 | 580 | 572 | 9.6  | 0.37 | 0.29            | 0.58  |
| ADG, lbs/d       | 1.6                       | 1.7 | 1.9 | 1.7 | 0.10 | 0.23 | 0.10            | 0.13  |



# Feeding logistics/efficiency

Time to feed – Mixing time, etc.
Number of loads to deliver – Energy density



# What about corn by-products other than Sweet Bran®?



#### Each dot represents an ethanol plant

Brown et al., 2014

## **Materials and Methods**

#### Performance and Health Study

- 70 d
- 320 crossbred steers (BW = 559 lbs) Superior Livestock
  - Two loads from Groesbeck, TX (590 miles)
  - Two loads from Hatch, NM (886 miles)
- 2 x 2 factorial design
- Two varieties of corn by-products
  - Wet distiller's grains plus solubles
  - Sweet Bran
- Two levels of corn processing
  - Whole shelled corn
  - Dry-rolled corn
- All four diets formulated to provide 0.60 Mcal NE<sub>g</sub>/lb DM
- 8 pens / treatment combination
- Pen weights collected weekly using pen scale and DMI adjusted accordingly

# ADG not affected by corn processing or by-product



<sup>a</sup>By-product effect P = 0.34, Corn processing effect P = 0.34, Interaction P = 0.93

## Efficiency of gain equal between treatments



<sup>&</sup>lt;sup>a</sup>By-product effect P = 0.46, Corn processing effect P = 0.38, Interaction P = 0.51

## Conclusions

- High-energy diets based primarily on Sweet Bran or wet distiller's grains plus solubles yield similar performance
- No affects on health
- Relatively lower overall efficiencies
  - <u>2% of BW could be too restricted</u>
- Extent of corn processing does not affect performance

## Research Summary – 9 trials and ongoing







## Dale A. Blasi Kansas State University

dblasi@ksu.edu

