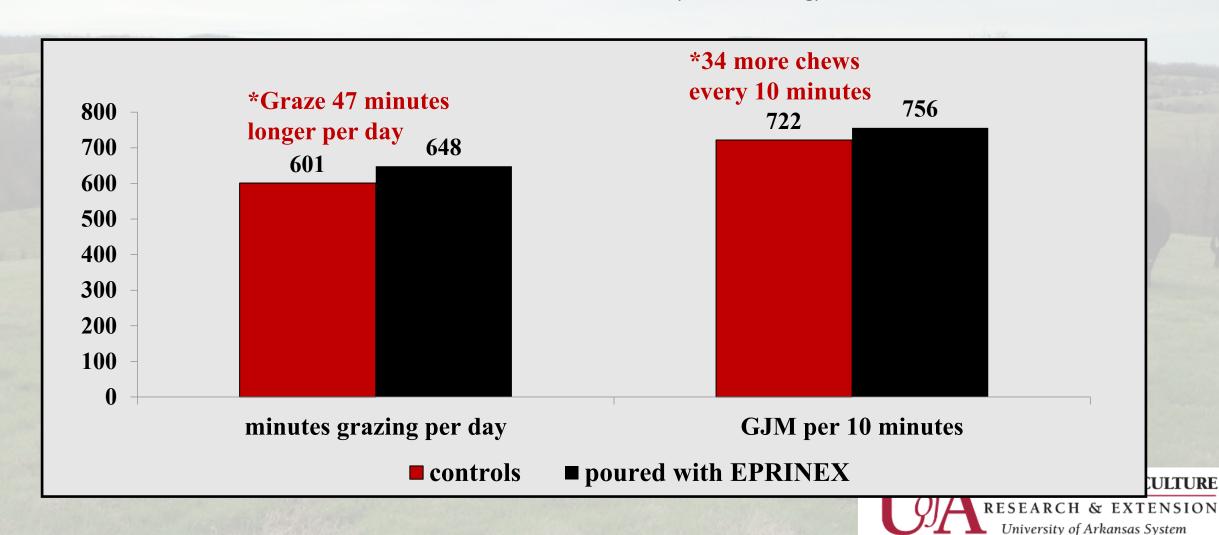
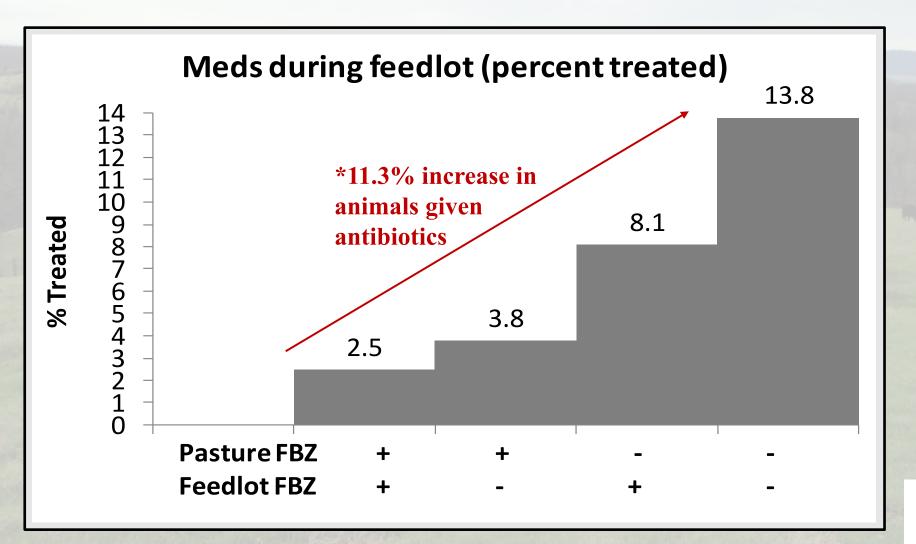


Does it pay to deworm your cattle?

- Commonly asked questions:
 - When do I deworm my cattle?
 - What is the best product to use?
 - Should I deworm my cattle at all?
- The purpose of deworming is to increase your income and give your cattle a better quality of life


Why are worms so important?

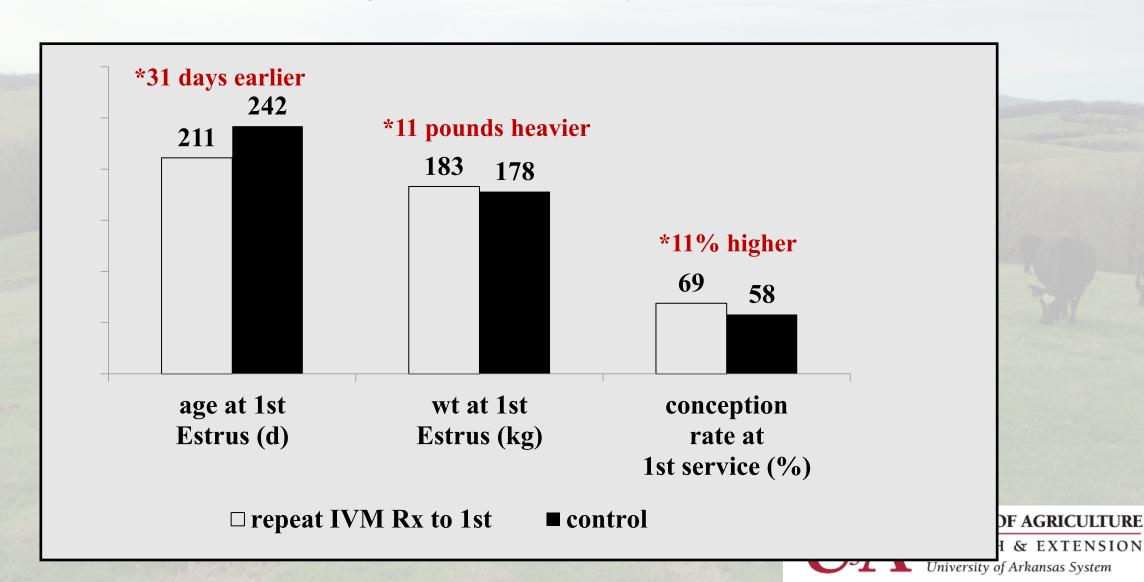
- Negatively Impacts Production (which means Profits)
 - Affect Forage Intake Behavior
 - Affect Feed Conversion Rates
 - Increase Secondary Illnesses
 - Affect Reproduction Efficiency


Changes in voluntary eating patterns Canadian dairy cows after deworming

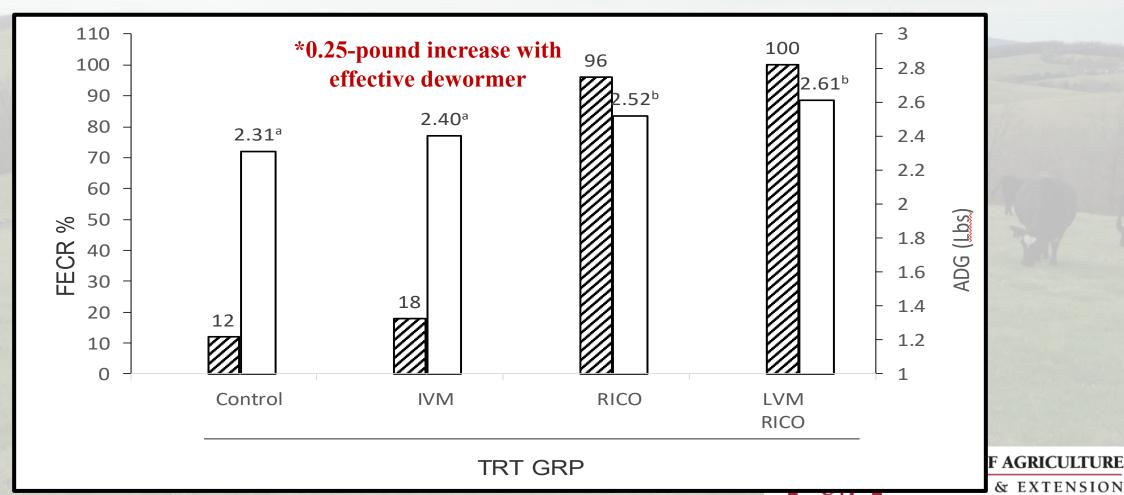
-Forbes, Huckle & Gibb. 2004. Veterinary Parasitology 125:353-364

Controlling worms reduces secondary illnesses

-Smith *et al.*, 2000



- "FBZ" = Safe-Guard
- FBZ given 3X while on pasture
 - days 0, 28 and 56
- FBZ given 1X at feedlot
 - day 118


Progress of replacement Holsteins relative to deworming

-Mejia et al. 2009, Veterinary Record, 165:743-746

The effect of anthelmintic resistance on the productivity in feedlot cattle

-Fazzio, Sanchez, et al., (Argentina); Vet Parasitology, 2014

• Eliminating internal parasite control (i.e. not deworming) negatively impacts break-even selling price by 34%, equal to a loss of \$165 per head

- Decreased Intake, Poor Appetite
 - Lowered weight gains & milk production
 - Poor BCS, Poor reproductive efficiency
- Blood and Tissue Loss
 - Reduced immune competence
 - Introduction of secondary pathogens
 - Lower feed conversions

Worms of Concern

- **✓** Cooperiads (3-4 different species)
- ✓Brown Stomach Worm (Ostertagia)
- **✓Barber Pole Worm (Haemonchus)**
- Intestinal Thread-Necked Worm (Nematodirus)
- Nodular Worm (Oesophagostomum)
- ❖Whipworm (Trichuris)
- Liver Flukes (Fasciola)
- ❖ Tapeworms (Moniezia)

✓ Important Everywhere

❖Important only on specific situations or some operations

Helminths "coming to the feed yards" during the summer of 2014 (NE, OK & TX)

(282 fecal samples)

	ltem	Strongyle	Nematodirus	Moniezia
	Positive Fecal Sample	98.9%	16.0%	17.4%
A LIVE AND	EPG range	0 – 9000	0 - 42	-
	EPG Mean	362.8	1.2	-
	% over 100 EPG	51.8	0	-

How do worms get so bad?

- 1. Not knowing the degree of infection
- 2. Not treating at all
- 3. Using ineffective products **
- 4. Using products improperly **
- 5. Unnecessary treatments **
 - **Drives Drug Resistance → → \$\$ Lost

- Treat when there is a challenge
 - "Targeted, Selective Treatments"
- Ideally, confirm treatments are necessary with Fecal Egg Counts
- Target specific seasons and production periods
- Use an effective dewormer
 - Fecal Egg Count Reduction Test

- Mama Cows ~30 days Before Calving, Intake
 - Better Feed Conversions → Higher milk yields →
 Larger Calves and Quicker Return to Estrus
 - See more impact on production with first- and secondyear heifers, and on milking operations
 - Typically, never need to treat healthy, mature mama cows

- Calves At or Close to Weaning, Intake
 - Stressful time, diet change, taxed immune system
 - Lower parasite burdens \rightarrow Better feed conversions
 - → Significant Increase in Weight Gains
 - Fewer secondary infections

- •Replacements Spring, Fall, Intake
 - Younger, heavier and more successful at first heat/service
 - Higher milk yields → Heavier Calves and Quicker Return to Estrus

- •Bulls Spring, Fall, ~30 days Before Use
 - Males tend to have harder time with worms
 - Bulls get distracted and often don't take care of themselves, especially during breeding season
 - →→ Higher Parasitisms

What dewormer should I use?

• Drugs

- 1. "White Wormers"
- 2. Prohibit
- 3. Clorsulon
- 4. Cydectin
- 5. Eprinomectin Long Range
- 6. Ivermectin (Avermectins)
 - Pioneer vs Genetic

Application Methods

- 1. Drench/Paste (Oral)
- 2. Injectable
- 3. Topical (Pour On)
- 4. Extended-Release
- 5. Feed Blocks/Additives

How do I develop a successful Parasite Control Program?

- Conduct regular Fecal Egg Counts
 - 100% of herd is ideal, 15-20% will work
 - As often as able—bi-monthly is best, seasonally is next best, yearly at the very least
- Test effectiveness of dewormers every time they are used (ideally)
 - Fecal Egg Count Reduction Test
 - 100% of herd is ideal, 15-20% will work

How do I develop a successful Parasite Control Program?

- Implement management strategies such as:
 - Grazing and Forage Management
 - ~90% of the worm population on pasture
 - Rotational grazing based on forage height
 - Forage-type differences

How do I develop a successful Parasite Control Program?

- Tailor your control program to your specific operation
 - Every operation is unique
 - Production Type
 - Worm Burdens
 - Resistance Levels
 - Available Land
 - Available Labor
 - Available Facilities
 - etc. etc. etc.

So, does it pay to deworm your cattle?

- Yes. But the only way to be certain is to do the following:
 - Accurately weigh your animals
 - "Beginning Weights": intake weights, weaning weights, before you administer treatments
 - "End Weights": after treatments, when selling calves, etc.
 - Accurately administer dewormers
 - Conduct FECRT in order to assess the effectiveness of your chosen dewormer
 - Calculating profits gained from deworming requires a set of "control" animals that are left untreated

Eva M Wray University of Arkansas 1120 W Maple St AFLS B103-D emcclint@uark.edu (479) 575-4855

