

Preparing For Extended Drought

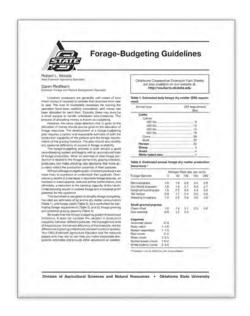
Introduced Forages

Brian C. Pugh, Area Extension Agronomy Specialist

It's Not Just Drought We're Facing

- Drought might be the hardest thing we face as producers.
- Except for drought when input costs are high!
 - Fertilizer
 - Supplement
 - Hay?
 - Herbicide
- These inputs are all associated with cow nutrition (FEED\$).
- As costs rise, the <u>VALUE</u> of our forage increases.
- We must improve our forage management!

Forage Management In Drought


- Develop a plan
 - Baseline assessments
 - Optimize production within system constraints
 - Balanced forage systems
 - Capitalize on available moisture
 - Scrutinize expenditures based on potential savings/revenue
 - Exploit Efficiency Factors!
 - Be aware of drought induced livestock losses
 - Nitrates, prussic acid, poisonous plants, water quality

Soil Testing Test, Don't Guess

- Sample same time of year (dormant season is best)
- Representative sample of area treated the same
- 15-20 cores minimum
- Observe the correct depth for every core, 6"
- Best \$10 you will spend in 2022!
- Use the OSU recommendations to start your decision-making process

Forage Budget Keeping Track of Your Grass Account

- OSU Factsheet PSS-2584
 - How much do the cows need?
 - How much are we producing?

Forage Budget Rules of Thumb

Keeping Track of Your Grass Account

- For E. OK, 1 acre will produce 1 ton of forage per year without fertility!
- It takes 50 lbs actual N to make 1 additional ton of warm season grass
- It takes 60 lbs actual N to make 1 additional ton of cool season grass

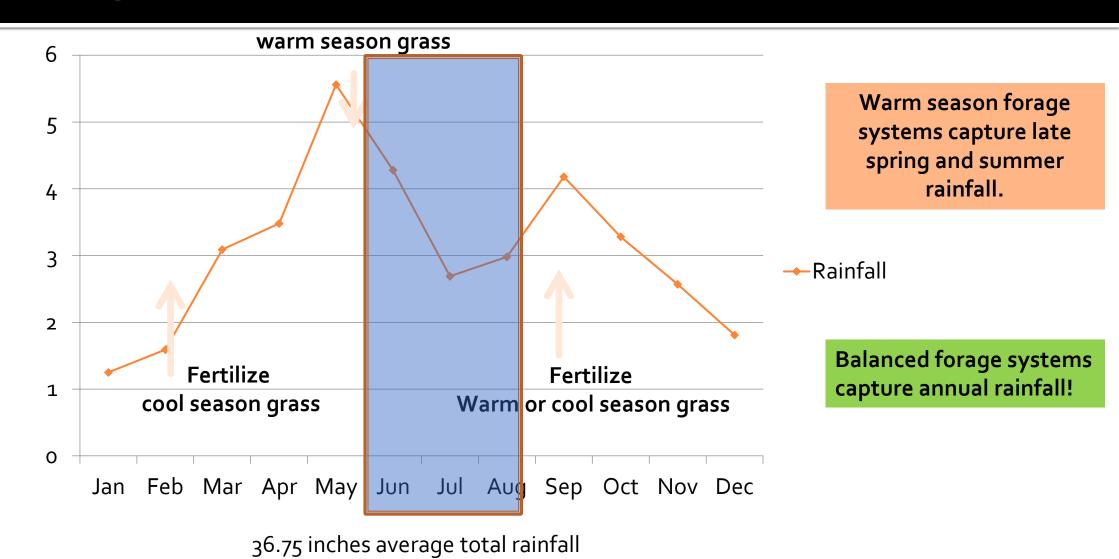
Forage Budgeting.(F-2584)

- Livestock description 1200# cow
- Total number of days 210
- Dry matter consumption <u>43 lbs/day</u>
- Lbs/animal <u>9030</u> x #animals <u>100</u> =
- Total # forage required ___903,000 __/2000 =
- 452 tons of forage required.

15,695 lbs per year7.8 tons/cow/year!

At best only assume 70 % utilization of standing forage.

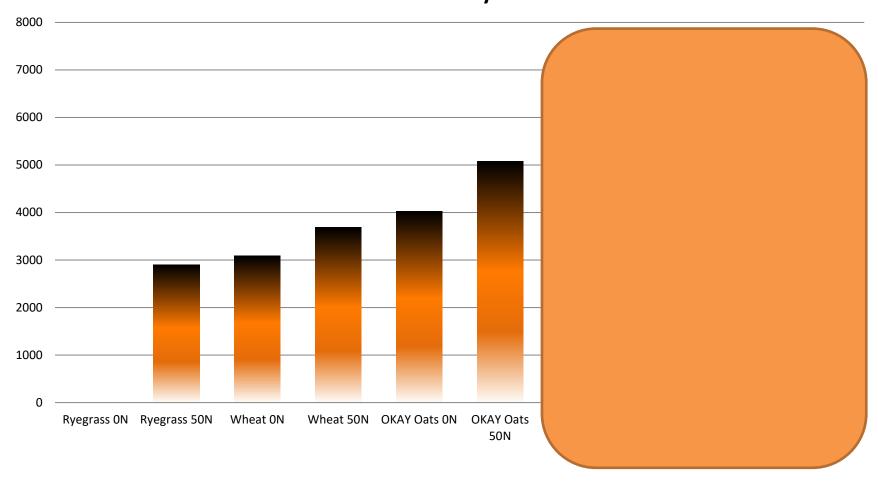
Many producers rely on 5 months of Bermuda production to supply the cow's needs for the whole year.



What happens if we don't get summer rains?

Rainfall for Payne County

(1981-2011)



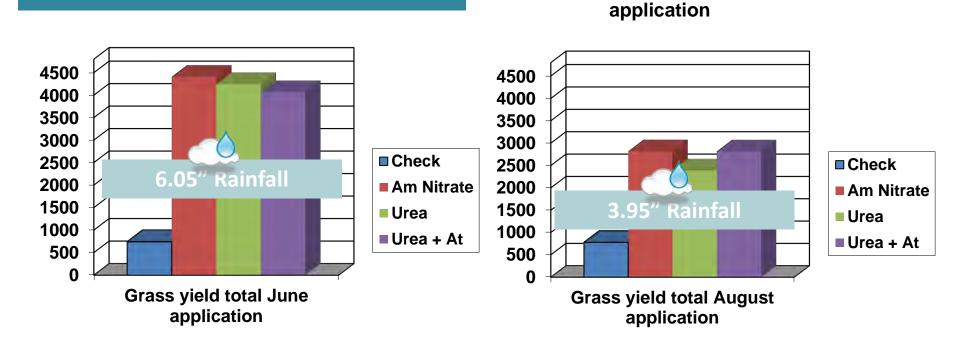
Spring Seeded

March 14, 2013 planting (43° soil temp)
Tilled ground, drill seeded
0 or 50 lbs actual N as Urea @ planting (P&K adequate)
Harvested May 22, 2013
Significant growth following first of May!

Dry Matter Yield (lbs/A) of Spring Forages Planted March 14th - Harvested May 10th

Spring Seeded Forages

- Oats are the best option for DM yield
- Effectively reducing winter feeding through grazing of small grain forages requires proper forage budgeting in conjunction with a fall-seeded stand.
- Shows a great opportunity for "last minute" hay crop



Summer Fertility In A Drought?

N Source 4500 4000 **Effects On Yield** 3500 3000 2500 Kinta, OK 2005 2000 7.40" Rainfall 1500 Brian Pugh & Chris Rice 1000 **500**

Statistically no significant differences

Plots last harvested on Oct 17th

Grass yield Total May

■ Check

Urea

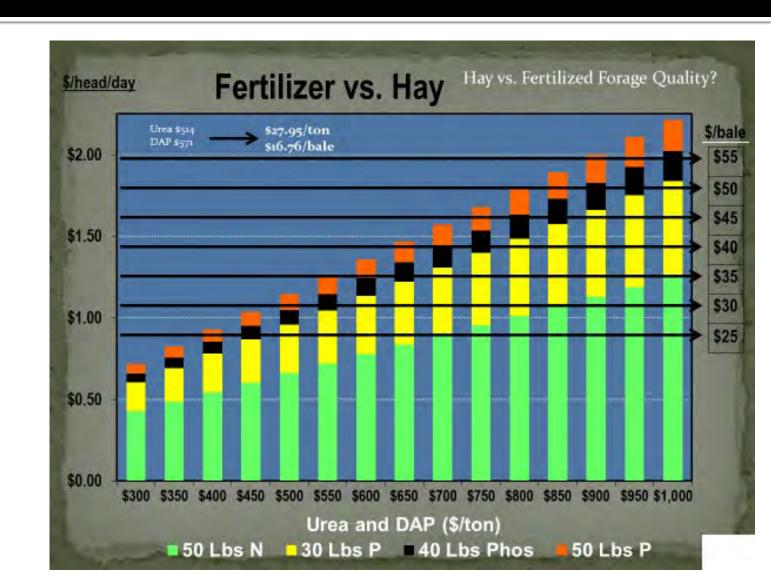
■ Am Nitrate

■ Urea + At

Application of 100 units N – 294 lb/ac amm. nitrate, 217 #/ac urea, or 217 lb/ac of urea+Agrotain.

Effects of Fertility On Droughty Bermuda. Muskogee County, 2012.

This was with 2.97" of rainfall!!!


- A Texas study in 1958 found that it takes about 20 inches of water to produce one ton of un-fertilized Bermuda.
- Under high fertility it only took 4 inches per ton.

Effect of Nitrogen Fertilizer on Hay Production and Water Utilization by Midland 99 Bermudagrass - 2012

Nitrogen	Tons/A	Inches of
Lb./A		Water/ton
0	1.2	3.4
33	1.85	2.2
130	2.79	1.5
217	3.17	1.3
435	4.17	1.0

How Can I Afford Fertilizer?

- Assuming just N
- Assume utilization
 - Hay 80%
 - Forage 65%
- 30 lbs of consumed forage
- If I'm willing to pay \$35 for a 1100 lb bale of hay (1.193/c/d)
- Then \$945/ton urea will equal that forage value (\$1.186/c/d)

Improve Forage Utilization You already Grew It! Use it Wisely!

Converting from a continuous to a rotational stocking system.

State Trials	% Increase StckRate
Arkansas	44
Georgia	37
Oklahoma	35
Virginia	61

Harvest Method	Low Efficiency	High Efficiency
Continuous Stocking	30	40
Slow Rotation (2-4 paddocks)	50	60
Moderate Rotation (4-8 paddocks)	60	70
Strip Grazing, MOB, Daily, etc.	70	80
Hay Harvest	30	75

Stockpile Directly Reduces Winter Feeding

Stockpiling:

- Native or Introduced, Cool or Warm Season Forage
- Great way to shift N applications to season when:
 - Rainfall is more secure
 - N costs are usually lower
 - We need to lengthen the grazing season!

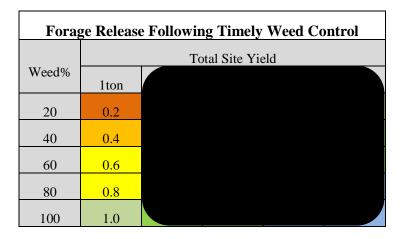
2018-2019	1 Day Strip	3-5 Day Strip	Continuous
	Valliant	Perkins	Perkins
# Head	248	42	42
Acres	131	17	12.3
Crude Protein	12.7	12.9	11.9
Energy (TDN)	59.3	62.2	58.5
Avg Yield	2249	4477	2934
Grazing Days	38	40	17
Cow Days/A	72	99	58
\$/C/D	\$0.38	\$0.29	\$0.50
Harvest Efficiency	83%	71%	57%
Weight Change	-9 lbs	+2	lbs

Strip Grazing Improves Utilization

Cool Season Forages (83% harvest efficiency above)

Stockpiled forages (71% utilization left)

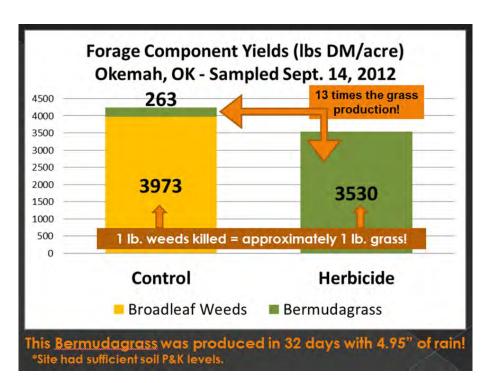
Weed Control


Conserves water, nutrients and sunlight

- Is there really enough weeds to justify the herbicide?
- Proper timing is usually worth a significant savings!
- When the rain does fall, what will take it up?
- Work with your County Educator to:
 - Properly ID the weed
 - Select the chemical
 - Develop a strategy

Thresholds

- Thresholds indicate the level at which a pest begins causing damage, either economic, production
- Ex. In pasture, a common threshold is
 25-30% for most weeds.
- Rethinking Pasture Thresholds
 - Base decisions on weed density AND site productivity!


Co	st Per A	dditiona	l Ton of	Producti	on
Add	Application Cost Per Acre				
Prod	\$8/A	\$12/A	\$16/A	\$20/A	\$24/A
0.2	\$40	\$60	\$80	\$100	\$120
	•		•		

Sept 14th 2012 105 DAT

Aug 14 – Sep 13 4.95" rainfall

Residual Leaf Area Natures' Solar Panel

- If you remove all the solar panels, the plant must draw energy from the root to regrow
- If this is repeated frequently, stand health declines
- Leaving at least 1-2 leaves at harvest or grazing results in fast regrowth
- Have a sacrificial pasture!

Recovery Period and Grazing Height			
Species	Initial Grazing Height	Minimum Grazing Height	Recovery Period in Rotation
Bermudagrass		2"	2 - 3 week
O.W.B.	8" - 12"	3"	2 - 4 week
Tall Fescue	6" - 12"	4"	3 - 4 week
Small Grains	8" - 10"	4"	2 - 4 week
Ryegrass	6" - 10"	4"	2 - 4 week

Native WS Grass Establishment

The Survivor

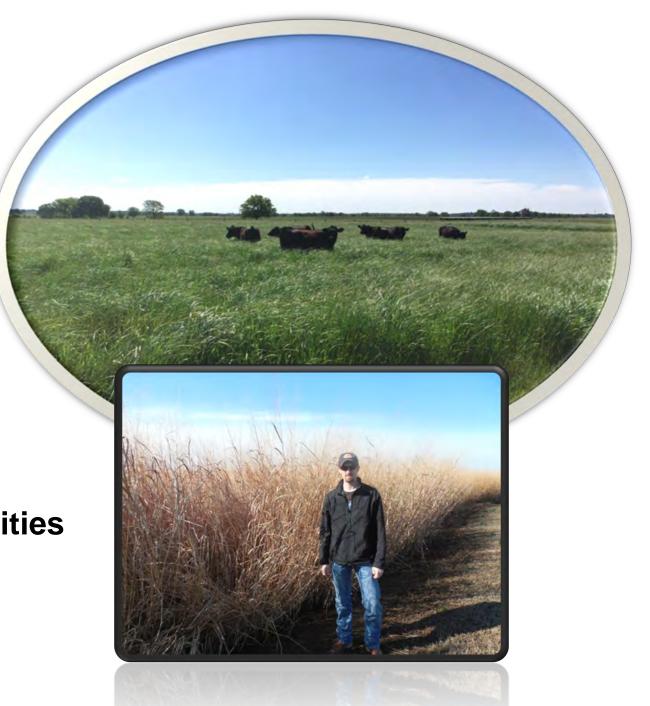
Decreased

Drought Effects

Purchased Feed

Hay (stockpiling is common)

Late spring fescue slump


Increased

Calf/stocker gains

Heifer development opportunities

Rest for introduced pastures

Profitability!

It is a good idea to maintain at least 10% of your acreage in native forages!

Forage Efficiency Summary

- Drought is scary but can be managed
 - Baseline Data will help you plan
 - Don't overstock, more cows does not equal more profit!
 - Don't eliminate, but minimize inputs based on economic returns
 - Optimize yields with smart fertility and improved utilization
 - Producers who have balanced forage systems have proven to be less affected by drought in 04-05 and 11-13.
 - Stockpile Something! This directly reduces winter feed needs
 - Drought and High Input Costs?
 - It's time to rely on your forage base to see you through!

Ag Economics
Agronomy
Animal Health
Livestock

NE County Educators & Area Specialist

Brian C. Pugh

OSU Extension Agronomy Specialist – Eastern OK

O | 918.686.7800

F | 918.686.7819

E | brian.pugh@okstate.edu 3007 Azalea Park Dr | Muskogee, OK 74401

OCES.okstate.edu/NEAreaExtension

