

Evaluation of Anthelmintic Resistance in OK Beef Cattle Herds

Assessment of Composite Fecal Sampling for Herd Level Fecal Egg Count Reduction Testing

> John Gilliam DVM, MS, DACVIM, DABVP Ruth Scimeca VMD, MSc, PhD, DACVM Jared Taylor DVM, MPH, PhD, DACVIM (LA), DACVPM

Objectives

- Investigate the prevalence of anthelmintic resistance in Oklahoma beef cow-calf herds via fecal egg count reduction testing
- Evaluate the use of composite fecal samples for detection of anthelmintic resistance at the herd level

• Study was internally funded through OSU CVM

Fecal Egg Count Reduction Test (FECRT)

- How does it work
 - Collect fecal samples prior to treatment (~5 grams)
 - Send to lab for fecal egg count (FEC)
 - Collect fecal sample from same animals in 14-21 days
 - Send to lab for FEC
 - Examine the % reduction in egg shedding between pre- and post treatment samples
 - % reduction less than 90% indicates resistance

Fecal Egg Count Reduction Test (FECRT)

• Limitations

- Consistent lab methods are critical
- Variable egg shedding between and within animals
- Anthelmintic may suppress egg shedding but not kill the worms
- Does not determine the species of parasite
- Cost and labor intensive
 - Current OADDL price list: \$25/sample

Currently the only way to assess anthelmintic efficacy

Background

- Anthelmintic resistance reported in weaned calves
 - Gasbarre et al. *Vet Parasitol* 2009
 - Gasbarre et al. Vet Parasitol 2009
 - Edmonds et al. Vet Parasitol 2010
- NAHMS Beef Cow-Calf Survey 2007-2008
 - Gasbarre et al. Can J Vet Res 2015
 - 33% of participating herds from the southeastern US had evidence of resistance
 - 2 of 4 herds from OK had evidence of resistance

Background

- One report of FECR testing using composite samples (George et al. Vet Parasitol 2017)
 - Compared testing composite samples to testing individual samples
 - Compared results in 14 different groups of cattle with a wide range of FEC
 - 95.9% agreement for FECR% between individual and composite samples
 - Reduced FEC required by 79%

Materials and Methods

- Recruited beef cow-calf herds from around the state
 - Submitted pre and post-treatment (14 days) fecal samples
 - Target of 20 calves per herd
 - Herds encouraged to follow standard parasite control practices
 - Study did not dictate products used, timing, calf selection etc
 - Did ask producers to sample the same calves pre and post treatment
 - Producers asked to submit short survey regarding herd management practices

Materials and Methods

- Fecal Egg Count
 - Wisconsin method
 - Limit of detection of 1 egg per gram (EPG)
- Composite samples
 - 1 gram from each animal to create composite sample
 - Wisconsin method on composite sample
- Inclusion criteria
 - Minimum of 25 EPG in pretreatment sample for inclusion in final analysis
 - Applied at the individual animal level
- FEC Reduction %
 - FECR% = [1-arithmetic mean post treatment/arithmetic mean pretreatment)] x 100
 - FECR% < 90% = resistance

Results - Animals

- 19 sample sets submitted
 - 17 herds represented (2 herds submitted two sample sets)
 - 16 sample sets included in the final analysis
 - 3 excluded due to pretreatment FEC <25 EPG
- 10-29 calves per sample set
 - Individual calves excluded for FEC <25 EPG ranged from 0-10 per set
 - Final calf numbers ranged from 8-24 calves per sample set
- 13 composite samples included in final analysis
 - One not performed, 5 had pretreatment FEC <25 EPG

Results - Geographic distribution

- Northeast 8
- Southeast 5
- Southwest 2
- Northwest 4

Results - Herd Management

- Operation type
 - Commercial 12
 - Seedstock 2
 - Combination 2
- Grazing management
 - Continuous grazing 7
 - Rotational grazing 7
 - Combination 2
- Pasture type
 - Native grass 4
 - Improved pasture 7
 - Combination 5

- Adults dewormed
 - Yes 12
 - No- 1
 - Unknown 3
- Weigh before dosing
 - Yes 7
 - No-9
- Anthelmintic product used
 - Injectable 5
 - Pour-on 7
 - Oral 4

Results – Fecal Egg Count Reduction

- Arithmetic means of individual samples
 - 13 of 16 (81%) failed to achieve >90% reduction
 - % reduction range -46% 72%
 - 3 of 16 (19%) achieved >90% reduction
 - % reduction all >99%
- Composite samples
 - 11 of 13 (85%) failed to achieve >90% reduction
 - 2 of 13 (15%) achieved >90% reduction
- Perfect concordance between arithmetic mean of individual samples and composite samples for resistance at the herd level

Results – Anthelmintics Represented

Anthelmintic Product

- Dectomax Inj (2)
- Dectomax PO (4)
- Cydection PO (5)
- Noromectin Inj (2)
- Ivermax Inj (1)
- Bimection PO (1)
- Safeguard Drench (3)
- Valbazen Drench (1)

% Reduction

- 11%, 19%
- -0.8%, 60%, 35%, 68%
- 56%, 55% (3 herds excluded due to low FEC)
- 33%, 25%
- 72%
- -46%
- 99%, 99.9%, 99.5%
- 63%

Results - Herd Management (Resistance/Total)

(2/2)

(5/5)

- Operation type
 - Commercial 12 (9/12)
 - Seedstock 2
 - Combination 2 (2/2)
- Grazing management
 - Continuous grazing 7 (6/7)
 - Rotational grazing 7 (5/7)
 - Combination 2 (2/2)
- Pasture type
 - Native grass 4 (2/4)
 - Improved pasture 7 (6/7)
 - Combination 5

- Adults dewormed
 - Yes 12 (9/12)
 - No-1 (1/1)
 - Unknown 3 (3/3)
- Weigh before dosing
 - Yes 7 (4/7)
 - No 9 (9/9)
- Anthelmintic product used
 - Injectable 5 (5/5)
 - Pour-on 7 (7/7)
 - Oral 4 (1/4)

- Broad survey of OK beef cow-calf herds
 - Geography
 - Operation type
 - Pasture type
 - Grazing management
 - Type of anthelmintic product used

- "Apparent" resistance appears to be widespread among OK cow-calf operations
 - Apparent resistance
 - Uncontrolled factors may have influenced results
 - 4 of 7 herds that weighed prior to treatment still had evidence of resistance
 - Apparent resistance was not isolated to a particular geographic region, herd type, pasture type, grazing management strategy or anthelmintic class/product
 - Unable to determine influence of these factors due small numbers and overall poor anthelmintic performance

- Study was not design to compare anthelmintic products to each other
- Fenbendazole was a novel product in the herds in this study
 - Two herds had used injectable ivermectin for several years
 - Tested 2 sets of calves, ivermectin was not effective, fenbendazole was effective
 - One herd had started switching to fenbendazole within the last year
 - Other products may have been as effective if used under the same circumstances

- Composite sampling correctly classified all herds
 - When compared to arithmetic means of individual samples
 - George et al. found similar results (George et al. Vet Parasitol 2017)
 - More work is needed but composite sampling looks promising
 - May significantly reduce the costs of testing and increase interest by producers

Limitations

- Small overall numbers
- Influence of uncontrolled factors is unknown
- Influence of low pretreatment FEC in some animals/composite samples is unknown

Moving forward...

- No introduction of new anthelmintic compounds in many years
 - New product recently released combination of existing products
- Must find other solutions to combat emerging resistance
- Goal should be suppression of parasites below an economic threshold while minimizing selection pressure for the development of resistance

- Low hanging fruit....
 - Dose correctly
 - Weigh animals if possible
 - Dose to heaviest weight if estimating
 - If using pour-on, apply according to directions
 - Administer strategically
 - Time anthelmintic treatment to minimize pasture contamination
 - Avoid treating and immediately placing on clean pasture
 - Use products for intended purpose only

• Refugia

- Proportion of parasite population not selected for resistance via anthelmintic exposure
 - Population of parasites in animals that are not treated
 - Developmental stages of parasites not effected by treatment
 - Free-living population of parasites on the pasture
- Maintaining refugia avoids the concentration of resistant genotypes in the parasite population
- Targeted selective treatment
 - Treating animals with the highest parasite loads while leaving others untreated
 - No clearly established method for application to cattle
 - FAMACHA[®] system in sheep and goats

- Refugia
 - FAMACHA[®] System (van Wyk et al. Vet Res 2001, Kaplan et al Vet Parasitol 2004)
 - Commonly used in sheep and goats to maintain refugia
 - Becoming the primary parasite control strategy
 - Treat animals based on pallor of ocular mucous membranes
 - Hematophagus Haemonchus contortus
 - Animals that are not anemic are left untreated as a source of refugia
 - Unfortunately not applicable to cattle

- Targeted selective treatment (TST) to maintain refugia
 - Selecting which animals to treat
 - Treat a fixed % of the group
 - Treat based on some threshold (weight gain, FEC, pepsinogen)
 - Treat some classes or age groups but not others

https://www.beefmagazine.com/grazing-systems/ranching-101-rotational-grazing-offers-many-benefits

- Adult beef cows as a source of refugia?
 - Well understood that cows develop immunity to nematode parasites with age
 - Possibilities
 - Leaving all adult cows untreated
 - Leaving oldest cows untreated
 - Leaving some % of cows untreated
 - Concerns
 - Impacts on production of cow and/or calf
 - Cow FEC's are generally low so impact on refugia?

https://beef2live.com/story-2016-cow-calf-production-shows-less-profitability-0-137147

- Adult beef cows as a source of refugia?
 - Unaware of studies that explore this exact question
 - Studies with untreated control group also leave calves untreated
 - Other studies compare impacts of anthelmintics to each other

The need for a source of refugia in beef cattle parasite populations is clear but information on the best way to achieve that goal is currently lacking

- Combination therapy
 - Administer 2 or more anthelmintics from different classes at the same time
 - Combination therapy typically more effective than either product alone

Treatment	Day 0	Day 14	Day 32	Day 61	Day 88	Day 117
Saline	36.0 ^{ab}	16.8ª	13.5ª	18.7ª	39.0ª	29.8ª
Doramectin	46.5ª	8.9 (47%) ^{ab}	7.5 (44.2%) ^a	14.9 (20.4%) ^a	32.3 (17.2%) ^a	37.3 (- 25.0%) ^a
Doramectin + Albendazole	42.8 ^a	0.2 (99.0%) ^c	0.2 (98.8%) ^c	7.9 (58%) ^b	27.9 (28.3%) ^a	26.3 (11.7%) ^a
Eprinomectin (ER)	24.7 ^b	4.8 (71.3%) ^b	3.9 (70.9%) ^b	4.9 (73.6%) ^b	8.6 (77.8%) ^b	13.0 (56.4%) ^b

Edmonds et al. Vet Parasitol 2018

Route of administration

- Pharmacokinetics determine the drug dose reaching the target parasites
- Route of administration impacts the pharmacokinetics

• Recent review by Lifschitz et al. NZ Vet J 2017

- Route of administration
 - Pour-on products tend to produce lower and more variable drug concentrations at the parasite level
 - Leathwick et al. Vet Parasitol 2016
 - Gokbulut et al. Vet Parasitol 2010
 - Sutherland et al. Trends in Parasitol 2011
 - Gasbarre et al. Vet Parasitol 2014
 - Other concerns with pour-on formulations
 - Licking (Laffont et al Int J Parasitol 2001, Bousquet-Melou et al. Int J Parasitol 2011)
 - Weather (Sargent et al Vet Parasitol 2009)

Moving forward.....

- Assess current anthelmintic program
 - If effective, stick with it
 - May find that some groups of cattle may not need to be dewormed
 - If not, investigate why
- Combination therapy may be needed
- Consider adopting strategy to increase refugia
- Use products according to label directions
 - Dose, application method etc
- Use products for intended purpose
 - Don't use anthelmintic products to control other parasites

What you learned today

- Apparent anthelmintic resistance appears to be widespread in OK cow-calf herds
- Composite sampling may be an effective way to detect anthelmintic resistance at the herd level
- Anthelmintic programs currently employed by participating herds appear to be largely ineffective
 - More work is needed to fully assess the prevalence and impact of anthelmintic resistance

What you learned today

- We can no longer assume that traditional parasite control programs are effective
 - Resistance to all available classes of anthelmintics has been detected
 - Resistance has been identified from a variety of production systems and geographic locations
- Monitoring effectiveness of parasite control programs is becoming critical
- There is a need for science based refugia programs in cattle
- Our parasite control programs should be adapted to the current climate of increasing drug resistance

Questions

COLLEGE OF VETERINARY MEDICINE