Poultry Litter	Agronomic	Application	Rate	Calculation	Work Sheet
----------------	-----------	-------------	------	-------------	------------

		Example:			Your numbers:		
1a	Nutrient needs of crop (lbs/acre)	Ν	=	200	Ν	=	
	Recommendations based on soil test results	$P_{2}0_{5}$	=	80	$P_{2}0_{5}$	=	
	and a realistic yield goal.	K_0	=	40	K ₂ 0ັ	=	
		_			_		
1b	Nutrients carried over in last 2 years' applications (lbs/acre)		=	25	Ν	=	
	See Table 2.	P ₂ 0 ₅	=	0	$P_{2}0_{5}$	=	
		K ₂ 0	=	0	K ₂ 0	=	
1c	Nutrient needs to meet with litter	Ν	=	175	Ν	=	
	Subtract line 1b from line 1a.	P_{2}^{0}	=	80	P ₂ 0 ₅	=	
		K ₂ 0	=	40	K ₂ 0	=	
2 T B c	Total nutrients available in litter (lb/ton)	Ν	=	64	Ν	=	
	Based on litter analysis of representative sample	$P_{2}^{0}0_{5}$	=	55	P ₂ 0 ₅	=	
	collected close to time of application.	K ₂ 0	=	43	K ₂ 0	=	
3	Determine available nutrients (lb/ton)	Ν	=	32	Ν	=	
	Multiply the value in step 2a by availability, 50% for N	P ₂ 0 ₅	=	50	P ₂ 0 ₅	=	
	and 90% for P and K.	K ₂ 0	=	39	K ₂ 0	=	
4	Colouiste englisetien vetes te sumply N and	N		. .	NI		
4a	Calculate application rates to supply N, and		=	5.5		=	
	P ₂ 0 ₅ needs (ions/acre) Divide values from Step 1c by values from Step 3	$P_{2}U_{5}$	=	1.0	$P_{2}U_{5}$	=	
	Divide values nom otep to by values nom otep o.						
4b	Choose between N or P.O. application rate (tons/acre)	Rate	=	1.6	Rate	=	
	Select highest rate in Step 4a to use litter as complete fertilizer.						
	Select lowest rate to maximize nutrient use.		(based on P)				
5a	Determine amount nutrients applied at chosen	Ν	=	51	Ν	=	
	rate (lbs/acre)	P_{2}^{0}	=	80	P ₂ 0 ₅	=	
	Multiply the rate chosen in step 4b by available	K ₂ 0	=	62	K ₂ 0	=	
	nutrients in step 3.						
				104			
5b	Determine supplemental nutrients (Ibs/acre)	N	=	124	N	=	
	Subtract the nutrients applied, step 5a from nutrients	P ₂ U ₅	=	0	μ ² 0 ²	=	
	needed, step to. If the difference is negative, effer 0.	r ₂ u	=	0	r ₂ u	-	

This worksheet calculates the rate of application based on crop nutrient needs, either on N or P requirement. However, NRCS Code 590 Guideline dictates how much can be applied, depending on soil test P and locations.